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Nondecay probability of the “correct” state of a memory cell:
Analytic approach versus numeric simulation
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This paper presents a complete description of noise-induced transitions in a memory cell based on the
parametric quantroa superconducting ring enclosed by a Josephson juncfldre time dependence of the
nondecay probability of the “correct” state of a memory cell is found to follow exponential behavior even for
a large noise intensity compared to a potential barrier hej§it063-651X98)08310-X

PACS numbsgs): 05.40:+j, 74.40+k

[. INTRODUCTION munity to thermal fluctuations of a bistable memory cell
based on the parametric quantron. The aim of the present
It is well known that the use of HTS overdamped Josephfaper is to obtain exact time characteristieements of de-

son junctions as logic devices and memory cells is quitecay time valid for an arbitrary noise intensity, and to find
prospective because of low cooling costs and high operatinfjle boundaries of validity of the exponential approximation
frequenciegsee, e.g.[1,2], and also proceedings of the last Of the nondecay probability. However, having compared ex-
ASC, ISEC, and EUCAS conferengeslowever, higher op- ponential approximation with the comput_er simulation re-
eration temperatures lead to higher noise levels and an irfults, we have found a really close coincidence even for a
crease in thermally induced switching errors. One of thd@rge noise intensity, i in the factor of the exponent is
problems arising in the design of HTS Josephson devices {EPlaced by the exact mean decay timeThe analysis has
the absence of a complete theory of noise-induced transitio pen done using the well-known resistive model of.a Joseph-
in nonlinear systems, valid for arbitrary noise intensity.sonjuncnor‘(‘]‘)) [7]. where quantum effects are not included.
Moreover, the difference between the theoretically predicted
(on the basis of approximate approacf@B and the experi- |l MAIN EQUATIONS AND SETUP OF THE PROBLEM

mentally observed switching probabilities of a Josephson ; js known that the dynamics of an overdamped single
balanced comparator has been recently demonstrated fﬁ[nction superconducting quantum interference device
temperatures above 25 [R]. (SQUID) (“the parametric quantron’[4]) with fluctuations

The parametric quantrofPQ) [4], consisting of a super- taken into account is well described by the Langevin equa-
conducting ring enclosed by a Josephson junciidd, is tion:

used for storage of information as the main element of

memory cells. When the PQ is applied as a bistable memory _,de(t) du(e)

cell, one of the most important parameters is immunity to © g T de —ig(1), Y

thermal fluctuations, which can spontaneously switch the

memory cell from one state to another. However, because Qfnere

mathematical difficulties, only approximate evaluations have

been done for such important characteristics as the mean U(@)=1—cose+(o—pg)22/ @)

decay time of the “correct” statéor mean time of sponta-

neous switqhinjg while the variapce af‘d higher cunju.lants ofis the dimensionless potential profile=27®/® is the
the decay time have not been investigated. Also, it is know'aimensionless flux through the ringb, is the flux quantum,

that, if the ratio between a potential barrier separating stabl - : _ :
’ N R . nti ri he external fluX,=L/L,, Listh
states and noise intensity is high, the probability that decaﬁqe quantity, describes the external flux,=L/Lo, L is the

Ynductance of the ringl.o=®/27l ., |, is the critical cur-
of the “correct” state of the memory cell will not occur until o 0T e e e
some timet (nondecay probabilityis proportional to the rent of the junctionjg(t) =l /lc, I is the random compo

exponent:~exp(—t/9) [5], wheredy = 7¢«/2 and 7, is the Pent of the fcrL: rrentw;;,zﬂRNlc./q)ﬁ Is the Thare:jcterils.tm
approximate mean decay time of the “correct” stét@am- requency of the JJ, arfgy, "= Gy, is the normal con uqtmty
ers’ time [4,6] of the JJ. In the case where only thermal fluctuations are

The present paper is devoted to the investigation of imjtaken into account,.the rqndom current may be represented
by the white Gaussian noise:
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wherey= 27kT/®gl .= |1/l is the dimensionless noise in-  The required time characteristics may be introduced from
tensity, T is the temperature, ankl is the Boltzmann con- the probability P(¢g,t) that transition of the phase point
stant. from ¢, outside the considered intervat-¢o,7r) will not

In the case of nonzero noise intensity, the flaxis a  occur during the timé>0: P(¢q,t)=/"..W(e,t)de.
random quantity described by the transitional probability By analogy to moments of the first passage tiiRRT) [8]
density W(e,t). It is well known that the Fokker-Planck we can introduce the moments,(¢q, ) =9, of transition
equation (FPE) for the probability densityW(¢e,t) corre-  time[9], bearing in mind that even for an infinitely long time
sponds to Eq(1) for the flux: the phase point may still be located within the considered

interval because lim,..P(¢q,t)=1/2:
IW(p,t) dG(e,t)

at o

where G(¢,t) is the probability current. The initial and
boundary conditions for Eq3) with the potential(2) are

t"{ P (@g,t)/t}dt

du(e)
de

IW(p,t) J.={t"= , 7
Ww,t)}wT}, € "= Blee )~ Pleo0) ™
where P(¢q,%°) — P(¢0,0)=[3{P(¢q,t)/dt}dt is the fac-

tor of normalization. In our particular cask(¢q,0)=1,

P(¢q,°)=1/2. Here we can formally denote the derivative
W(9,00=8(¢— @) and G(+o,t)=0. (4) of the probability _divided by the factor_ _of normglization as
w(¢q,t) and thus introduce the probability density of transi-

The nonlinear dynamical system described by the potenion time in the following way:
tial profile (2) may have one or several stable states depend-
ing on quantities of parameters and ¢.. To use the para- W(gg,t)= IP(¢o,t) _ @)
metric quantron as a memory cell, it is enough to have two "7 dt[P(¢g,%) = P(¢0,0)]
stable state§4], which may be realized at<3/<8, ¢, ) o o .
= 7. In this particular case the potenti@) has the parabolic It is easy to check that the normalization condition is satis-
barrier separating two wells with parabolic walls, slightly fied given such a definition,ow(¢o,t)dt=1. The condition
modulated by the cosine term. However, it is difficult to of nonnegativity of the probability density(¢q,t)=0 is,
analyze the functioning of such a system because the sol@ctually, the monotonic condition of the probability
tion of FPE(3) for the potential(2) is unknown. When the P(¢,t).
potential barrier separating the stable states is high enough in The above-mentioned cumulants of transition tiryeare
comparison with the noise intensitgus v, it is possible to much more useful for our purpose to construct the probabil-
approximately obtain the mean decay time of the “correct” ity P(¢g,t) that is the integral transformation of the just
state [4] on the basis of the Kramers methdé] (« introduced probability density of transition time(eg,t).

=Auly): Unlike the representation via moments, the Fourier transfor-
mation of the probability density — the characteristic func-

2 tion — decomposed into a set of cumulants may be inversely

™ b e’ a>1 (®  transformed into the required probability density. The repre-

¢ sentation ofx, via momentsd,, is described in the book by

whereb= b Brme andby, andb,,, are the curvatures of Malakhov[10] (see alsd11]).

the bottom of the well and the top of the barrier of the po-

tential (2), respectively. In this case the probabilR{¢g,t) ll. EXACT TIME CHARACTERISTICS
that decay of the “correct” state will not occur until some

time t may be very well approximated by the exponent: The method used is based on the Laplace transformation

of the FPE(3) and obtaining time characteristics b0f(¢,t)

exp(—t/9y) + 1 evolutic_)r_1 immediately from the solution of the equation for
P(¢g,t)= — Ik = 7¢/2. (6)  probability density Laplace transforf®,12] Y(¢,s)=Y(¢)
=[oW(e,t)e""dt:
Here ¢, is the coordinate of the initiab-shaped probability d2Y(e) d[du(e)
distribution. Certainly, in the cas), (6) the probability iJr u(‘P y( )| —SBY(¢)=—Bd(¢— o)
does not depend oag, but searching further for the exact de? de ’
0

probability evolution we will keep in mind the initial distri- (9)
bution ate,. Formula(6) may be obtained via the approach
presented in the book by Gardiné]. whereB=1/ywc.

Let, initially, a bit of information be stored in the memory It is known that there is the recurrent formyla3] for
cell by locating the phase point in the left minimum of the moments of the FPT of the boundary locategatc> ¢ by
potential(2), such thatpy< . The decay time of the “cor- the phase point under noise perturbatjior — )= +=]:
rect” state we define as the time needed to cross the barrier
top ¢=. Itis clear that this decay time is a random value ¢ (¢o,c):anc eu(@/yf“’ T, 1(x,c)e”"¥/7dxde,
and the problem is how to obtain its meas x,=(t), vari- ®0 —o
anceD = k,=(t?)—(t)?, and higher cumulants,, . (10)
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which represents thath moment of the FPT directly from P(¢)
the function of the potential profila(¢) and the 6—1)th 1.00
moment. Herel3(¢qg,c) =1 andT(¢g,C) is the mean FPT.
Using the duality of time characteristics, proved @, it : y=5

can be demonstrated that all moments of transition tilpe

in a symmetric potential over a point of symmetry coincide y=1
with the corresponding moments of the first passage time of
the boundary located at the point of symmetd;(¢q,C) y=0.5

=T.(¢g,c) (in our particular case= 7). Thus formula(10)

is also valid for moments of transition time. When the inten-
sity of thermal fluctuations is much smaller than the barrier
height, y<Au, the following asymptotic representation can
be obtained from formuld10) for moments of transition
time:

50.0 1000 1500 200.0 2500 300.0
t
Yn(¢0,C)=n!9](¢g,C), Au>vy. (11 FIG. 1. Evolution of the nondecay probability for different val-
ues of noise intensity.
The results of computer simulation demonstrate that ex-

pression(11) is valid up toAu/y=2. Using the properties of IV. PROBABILITY EVOLUTION
cumulants[10], similar representation can be obtained for ) - ) )
Ky Integrating probability density13), with the account of
definition (8), we get the following expression for the prob-
(12) ability P(¢g,t) that decay of the “correct” state of a

K .C)=(n—D'kJ(@g,C), Aus>y. ) _ )
n(#0,€)=( )i @0.) Y memory cell will not occur until some time(a=Au/y):

It is known that the characteristic functio® (¢q,)

= [ow(go,t)e®'dt (j=—1) can be represented as a set of _exp—t/n)+1
cumulants: P(¢o,t)= 2 o>l (16)
o Kn(90,0) here th decay time(15) is two ti ller th
O( 0y, w) = ex n| where the mean decay time(15) is two times smaller than
(¢0,) F{E n! (o) } the Kramers’ time(3) and thus formulg16) completely co-

incides with(6). Actually, the validity of formula(16) coin-
For our particular casél?) this set can be summarized and cides with the validity of formulg15) and, as previous cal-

inverse Fourier transformed, so we get culations demonstrate, formu(&5) is valid up toa=2. Our
aim was to numerically test this fact for formu(46). We
e lr used the usual explicit difference scheme to solve the
W(po, ) =——, Au>y (13 Fokker-Planck equatiof8), assuming the reflecting bound-

ary conditionsG(=d,t)=0 to be far from the potential
minima, instead of natural boundary conditigds Note that
we located reflecting boundaries far enough from the poten-
1 (= . tial minima and controlled it carefully, thus even for the
(@g, )= f e“(‘P)’Vf e U vdx dp, (14) large noise intensityfindicated belowy the influence of re-
Y®cJ gy - flecting boundaries on the diffusion process was negligible.
Comparing the computer simulation results with formula
with the asymptotic representation€ Au/y): (16), we have substituted exact mean decay tirte,, ),
Eq. (14), for asymptotic formuld15) and have found a really
close coincidence between the curves, even for a noise inten-
e, a>1. (15 sity larger than unity, where formulél5) is not valid (see
Fig. 1). Figure 1 presents the numerically simulated nonde-
Formula(13) is, unfortunately, not valid for small periods ¢&Y p,rObab'“tYP(fO’t) and the approximate one versus di-
of time t<r, because it assumes that a quasi-steady-stafgensionless timé”* =w.t. The potential barrier height and
distribution in the initial well is already reached and then theth€ dimensionless inductance are, respectivaly~1.3, /
escape over the barrier happens, so the initial transition to the 6- The maximal difference between the corresponding
quasi-steady-state is neglected. Namely, this circumstan@@/fves s 6<0.4%, y=0.2; §<1%, y=0.3; 6~1%, v
will lead to a slight distinction of the numerically simulated =0-4; 6<1.5%, y=0.5; §<3%, y=1; 6~2%, y=2; 6
probability from its exponential approximatigeee the next ~°%, y=5; 6~7%, y=10.
section. The asymptotic representation of the probability
densityw(¢o,t) for small periods of time was obtained |n V. CONCLUSIONS
[14] and it has been demonstrated that the time of transition
to a quasi-steady-state in the initial well is really much In the present paper a complete description of noise-
smaller than the mean decay tir(b). induced transitions in a bistable memory cell based on the

where 7 is the mean transition timer(¢q, 7)=%=«k4]:

o aw
(g0, )= 7= 5

C
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