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Nondecay probability of the ‘‘correct’’ state of a memory cell:
Analytic approach versus numeric simulation
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This paper presents a complete description of noise-induced transitions in a memory cell based on the
parametric quantron~a superconducting ring enclosed by a Josephson junction!. The time dependence of the
nondecay probability of the ‘‘correct’’ state of a memory cell is found to follow exponential behavior even for
a large noise intensity compared to a potential barrier height.@S1063-651X~98!08310-X#

PACS number~s!: 05.40.1j, 74.40.1k
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I. INTRODUCTION

It is well known that the use of HTS overdamped Jose
son junctions as logic devices and memory cells is qu
prospective because of low cooling costs and high opera
frequencies~see, e.g.,@1,2#, and also proceedings of the la
ASC, ISEC, and EUCAS conferences!. However, higher op-
eration temperatures lead to higher noise levels and an
crease in thermally induced switching errors. One of
problems arising in the design of HTS Josephson device
the absence of a complete theory of noise-induced transit
in nonlinear systems, valid for arbitrary noise intensi
Moreover, the difference between the theoretically predic
~on the basis of approximate approaches@3#! and the experi-
mentally observed switching probabilities of a Joseph
balanced comparator has been recently demonstrated
temperatures above 25 K@2#.

The parametric quantron~PQ! @4#, consisting of a super
conducting ring enclosed by a Josephson junction~JJ!, is
used for storage of information as the main element
memory cells. When the PQ is applied as a bistable mem
cell, one of the most important parameters is immunity
thermal fluctuations, which can spontaneously switch
memory cell from one state to another. However, becaus
mathematical difficulties, only approximate evaluations ha
been done for such important characteristics as the m
decay time of the ‘‘correct’’ state~or mean time of sponta
neous switching!, while the variance and higher cumulants
the decay time have not been investigated. Also, it is kno
that, if the ratio between a potential barrier separating sta
states and noise intensity is high, the probability that de
of the ‘‘correct’’ state of the memory cell will not occur unt
some timet ~nondecay probability! is proportional to the
exponent:;exp(2t/qK) @5#, whereqK5tK/2 andtK is the
approximate mean decay time of the ‘‘correct’’ state~Kram-
ers’ time! @4,6#.

The present paper is devoted to the investigation of
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munity to thermal fluctuations of a bistable memory c
based on the parametric quantron. The aim of the pre
paper is to obtain exact time characteristics~moments of de-
cay time! valid for an arbitrary noise intensity, and to fin
the boundaries of validity of the exponential approximati
of the nondecay probability. However, having compared
ponential approximation with the computer simulation r
sults, we have found a really close coincidence even fo
large noise intensity, ifqK in the factor of the exponent is
replaced by the exact mean decay timet. The analysis has
been done using the well-known resistive model of a Jose
son junction~JJ! @7#, where quantum effects are not include

II. MAIN EQUATIONS AND SETUP OF THE PROBLEM

It is known that the dynamics of an overdamped sin
junction superconducting quantum interference dev
~SQUID! ~‘‘the parametric quantron’’@4#! with fluctuations
taken into account is well described by the Langevin eq
tion:

vc
21 dw~ t !

dt
52

du~w!

dw
2 i F~ t !, ~1!

where

u~w!512cosw1~w2we!
2/2l ~2!

is the dimensionless potential profile,w52pF/F0 is the
dimensionless flux through the ring,F0 is the flux quantum,
the quantitywe describes the external flux,l 5L/L0 , L is the
inductance of the ring,L05F0/2pI c , I c is the critical cur-
rent of the junction,i F(t)5I F /I c , I F is the random compo-
nent of the current,vc52pRNI c /F0 is the characteristic
frequency of the JJ, andRN

215GN is the normal conductivity
of the JJ. In the case where only thermal fluctuations
taken into account, the random current may be represe
by the white Gaussian noise:

^ i F~ t !&50, ^ i F~ t !i F~ t1t!&5
2g

vc
d~t!,
6964 © 1998 The American Physical Society
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whereg5 2pkT/F0I c5 I T /I c is the dimensionless noise in
tensity, T is the temperature, andk is the Boltzmann con-
stant.

In the case of nonzero noise intensity, the fluxw is a
random quantity described by the transitional probabi
density W(w,t). It is well known that the Fokker-Planc
equation ~FPE! for the probability densityW(w,t) corre-
sponds to Eq.~1! for the flux:

]W~w,t !

]t
52

]G~w,t !

]w

5vc

]

]w H Fdu~w!

dw
W~w,t !G1g

]W~w,t !

]w J , ~3!

where G(w,t) is the probability current. The initial and
boundary conditions for Eq.~3! with the potential~2! are

W~w,0!5d~w2w0! and G~6`,t !50. ~4!

The nonlinear dynamical system described by the po
tial profile ~2! may have one or several stable states depe
ing on quantities of parametersl andwe . To use the para-
metric quantron as a memory cell, it is enough to have t
stable states@4#, which may be realized at 3,l ,8, we
5p. In this particular case the potential~2! has the parabolic
barrier separating two wells with parabolic walls, slight
modulated by the cosine term. However, it is difficult
analyze the functioning of such a system because the s
tion of FPE~3! for the potential~2! is unknown. When the
potential barrier separating the stable states is high enoug
comparison with the noise intensity,Du@g, it is possible to
approximately obtain the mean decay time of the ‘‘correc
state @4# on the basis of the Kramers method@6# (a
5Du/g):

tK5
2p

bvc
ea, a@1 ~5!

whereb5Abminbmax, andbmin andbmax are the curvatures o
the bottom of the well and the top of the barrier of the p
tential ~2!, respectively. In this case the probabilityP(w0 ,t)
that decay of the ‘‘correct’’ state will not occur until som
time t may be very well approximated by the exponent:

P~w0 ,t !5
exp~2t/qK!11

2
, qK5tK/2. ~6!

Herew0 is the coordinate of the initiald-shaped probability
distribution. Certainly, in the case~5!, ~6! the probability
does not depend onw0 , but searching further for the exac
probability evolution we will keep in mind the initial distri
bution atw0 . Formula~6! may be obtained via the approac
presented in the book by Gardiner@5#.

Let, initially, a bit of information be stored in the memor
cell by locating the phase point in the left minimum of th
potential~2!, such thatw0<p. The decay time of the ‘‘cor-
rect’’ state we define as the time needed to cross the ba
top w5p. It is clear that this decay time is a random val
and the problem is how to obtain its meant5k15^t&, vari-
anceD5k25^t2&2^t&2, and higher cumulantskn .
n-
d-

o

lu-

in

’

-

ier

The required time characteristics may be introduced fr
the probability P(w0 ,t) that transition of the phase poin
from w0 outside the considered interval (2`,p) will not
occur during the timet.0: P(w0 ,t)5*2`

p W(w,t)dw.
By analogy to moments of the first passage time~FPT! @8#

we can introduce the momentsqn(w0 ,p)5qn of transition
time @9#, bearing in mind that even for an infinitely long tim
the phase point may still be located within the conside
interval because limt→`P(w0 ,t)51/2:

qn5^tn&5

E
0

`

tn$]P~w0 ,t !/]t%dt

P~w0 ,`!2P~w0,0!
, ~7!

where P(w0 ,`)2P(w0,0)5*0
`$]P(w0 ,t)/]t%dt is the fac-

tor of normalization. In our particular caseP(w0,0)51,
P(w0 ,`)51/2. Here we can formally denote the derivativ
of the probability divided by the factor of normalization a
w(w0 ,t) and thus introduce the probability density of tran
tion time in the following way:

w~w0 ,t !5
]P~w0 ,t !

]t@P~w0 ,`!2P~w0,0!#
. ~8!

It is easy to check that the normalization condition is sa
fied given such a definition,*0

`w(w0 ,t)dt51. The condition
of nonnegativity of the probability densityw(w0 ,t)>0 is,
actually, the monotonic condition of the probabilit
P(w0 ,t).

The above-mentioned cumulants of transition timekn are
much more useful for our purpose to construct the proba
ity P(w0 ,t) that is the integral transformation of the ju
introduced probability density of transition timew(w0 ,t).
Unlike the representation via moments, the Fourier trans
mation of the probability density — the characteristic fun
tion — decomposed into a set of cumulants may be invers
transformed into the required probability density. The rep
sentation ofkn via momentsqn is described in the book by
Malakhov @10# ~see also@11#!.

III. EXACT TIME CHARACTERISTICS

The method used is based on the Laplace transforma
of the FPE~3! and obtaining time characteristics ofW(w,t)
evolution immediately from the solution of the equation f
probability density Laplace transform@9,12# Y(w,s)5Y(w)
5*0

`W(w,t)e2stdt:

d2Y~w!

dw2
1

d

dwFdu~w!

gdw
Y~w!G2sBY~w!52Bd~w2w0!,

~9!

whereB51/gvc .
It is known that there is the recurrent formula@13# for

moments of the FPT of the boundary located atw5c.w0 by
the phase point under noise perturbation@u(2`)51`#:

Tn~w0 ,c!5nBE
w0

c

eu~w!/gE
2`

w

Tn21~x,c!e2u~x!/gdxdw,

~10!
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which represents thenth moment of the FPT directly from
the function of the potential profileu(w) and the (n21)th
moment. HereT0(w0 ,c)51 andT1(w0 ,c) is the mean FPT.

Using the duality of time characteristics, proved in@9#, it
can be demonstrated that all moments of transition timeqn
in a symmetric potential over a point of symmetry coinci
with the corresponding moments of the first passage tim
the boundary located at the point of symmetry:qn(w0 ,c)
5Tn(w0 ,c) ~in our particular casec5p). Thus formula~10!
is also valid for moments of transition time. When the inte
sity of thermal fluctuations is much smaller than the barr
height,g!Du, the following asymptotic representation ca
be obtained from formula~10! for moments of transition
time:

qn~w0 ,c!5n!q1
n~w0 ,c!, Du@g. ~11!

The results of computer simulation demonstrate that
pression~11! is valid up toDu/g>2. Using the properties o
cumulants@10#, similar representation can be obtained f
kn :

kn~w0 ,c!5~n21!!k1
n~w0 ,c!, Du@g. ~12!

It is known that the characteristic functionQ(w0 ,v)
5*0

`w(w0 ,t)ej vtdt ( j 5A21) can be represented as a set
cumulants:

Q~w0 ,v!5expF (
n51

`
kn~w0 ,c!

n!
~ j v!nG .

For our particular case~12! this set can be summarized an
inverse Fourier transformed, so we get

w~w0 ,t !5
e2t/t

t
, Du@g ~13!

wheret is the mean transition time@t(w0 ,p)[q1[k1#:

t~w0 ,p!5
1

gvc
E

w0

p

eu~w!/gE
2`

w

e2u~x!/gdx dw, ~14!

with the asymptotic representation (a5Du/g):

t~w0 ,p!5t5
p

bvc
ea, a@1. ~15!

Formula~13! is, unfortunately, not valid for small period
of time t!t, because it assumes that a quasi-steady-s
distribution in the initial well is already reached and then t
escape over the barrier happens, so the initial transition to
quasi-steady-state is neglected. Namely, this circumsta
will lead to a slight distinction of the numerically simulate
probability from its exponential approximation~see the next
section!. The asymptotic representation of the probabil
densityw(w0 ,t) for small periods of time was obtained i
@14# and it has been demonstrated that the time of transi
to a quasi-steady-state in the initial well is really mu
smaller than the mean decay time~15!.
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IV. PROBABILITY EVOLUTION

Integrating probability density~13!, with the account of
definition ~8!, we get the following expression for the prob
ability P(w0 ,t) that decay of the ‘‘correct’’ state of a
memory cell will not occur until some timet (a5Du/g):

P~w0 ,t !5
exp~2t/t!11

2
, a@1 ~16!

where the mean decay timet ~15! is two times smaller than
the Kramers’ time~3! and thus formula~16! completely co-
incides with~6!. Actually, the validity of formula~16! coin-
cides with the validity of formula~15! and, as previous cal
culations demonstrate, formula~15! is valid up toa>2. Our
aim was to numerically test this fact for formula~16!. We
used the usual explicit difference scheme to solve
Fokker-Planck equation~3!, assuming the reflecting bound
ary conditionsG(6d,t)50 to be far from the potentia
minima, instead of natural boundary conditions~4!. Note that
we located reflecting boundaries far enough from the pot
tial minima and controlled it carefully, thus even for th
large noise intensity~indicated below! the influence of re-
flecting boundaries on the diffusion process was negligib
Comparing the computer simulation results with formu
~16!, we have substituted exact mean decay timet(w0 ,p),
Eq. ~14!, for asymptotic formula~15! and have found a really
close coincidence between the curves, even for a noise in
sity larger than unity, where formula~15! is not valid ~see
Fig. 1!. Figure 1 presents the numerically simulated non
cay probabilityP(w0 ,t) and the approximate one versus d
mensionless timet* 5vct. The potential barrier height an
the dimensionless inductance are, respectively,Du'1.3, l
56. The maximal differenced between the correspondin
curves is d,0.4%, g50.2; d,1%, g50.3; d'1%, g
50.4; d,1.5%, g50.5; d,3%, g51; d'2%, g52; d
'5%, g55; d'7%, g510.

V. CONCLUSIONS

In the present paper a complete description of noi
induced transitions in a bistable memory cell based on

FIG. 1. Evolution of the nondecay probability for different va
ues of noise intensity.
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parametric quantron has been carried out. Exact values o
moments of decay time and an almost exact nondecay p
ability have been obtained. It has been demonstrated tha
approximate model of exponential decay of the ‘‘correc
state of a memory cell is applicable with a good precis
even for a large noise intensity~large enough for real appli
cations, when the considered system cannot already be
for storage of information!, if the approximate decay time i
replaced by the exact one. The presented theory may be
ily used for design and analysis of real devices.
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